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Sequential model-based (Bayesian) optimization techniques have demonstrated 
success as black box optimizers in low-dim spaces (hyperparams for ML models) 

Open Source : SMAC, HyperOpt, Spearmint, MOE 

Companies : Whetlab, SigOpt

http://www.ml4aad.org/algorithm-configuration/smac/
http://hyperopt.github.io/hyperopt/
https://github.com/HIPS/Spearmint
https://github.com/Yelp/MOE
https://sigopt.com/
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● Multi-objective problems
● Objective fundamentally relates to human perception
● Physical system is difficult or costly to instrument

Approach : Interactive procedure to query user and guide optimization based on 
preference observations (bring human back into the loop!)
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1. Ask user to rank several 
parametrizations of a particle 
animation

2. Update latent utility model that 
best adheres to observed 
preference data 

3. Suggest new parameterizations 
that are expected to improve 
over best seen using latent utility
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1. Ask user to compare two 
configurations of hearing aid 
parameters in terms of subjective 
preference

2. Update latent utility model that 
best adheres to observed 
preference data 

3. Suggest next configuration that 
is expected to improve over best 
seen using latent utility
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Tuning feedback gains of a neuromuscular walking model [3]

1. Compare two configurations of feedback 
gains for subset of muscle actuators and 
report preference based on cost of 
transport and distance walked in 20 sec

2. Update latent utility model that best 
adheres to observed preference data

3. Suggest next configuration that is 
expected to improve over best seen using 
latent utility function 
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Motivation

Lots of complex engineering systems with 
many magic numbers (gains, decision 
thresholds, noise model parameters, etc) 

Often even experts have trouble discerning 
absolute quality preference between two 
alternative configurations

Previous work has supported only binary 
preference observations

Can we build on previous ideas to support  
observations having equivalent preference?
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Goals
System for design of experiments where only feedback is preference observations

1. Query user for preference information based on set of configuration proposals
2. Infer a latent utility function (utility values for every observation) that best 

adheres to observed preferences (allowing for equivalent preferences)
3. Search latent utility function for new configurations that are expected to have 

high utility to compare to current best
4. Repeat 1 with new configurations

Simple software interface to allow for extensions and rapid experiments
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Bradley-Terry Model Extension for Ties
The Bradley-Terry model relates the comparison points’ latent function values to 
discrete binary preferences.      
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x1 = -2.9       x2 = -1.2
f1  = 0.5        f2  = 0.6 

d =  (0.5 - 0.6) / (2.0)
d = -0.05

Bradley-Terry

p = [  0.48,  0.52  ]

Bradley-Terry with Ties ( β = 2.5)

p = [ 0.28,  0.43,  0.29 ]
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Inference

We have defined a probabilistic model 
capable of generating preference 
observations, with the possibility of ties.

p(x, z) is fully defined (joint distribution) 
when we know z.  However, we are 
interested in inferring the latent variables 
given only the observed preferences and 
the unique comparison points.

How to find (or approximate) the 
posterior p(z | x) ? z = {f, γ}                 x = {X, c} 

Latent vars             Observed vars
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Variational Inference
Many strategies to approximate p(z | x).  One idea is to pick an approximating 
distribution q(z) and minimize divergence between p(z | x) and q(z)

This is the core idea behind variational inference : use optimization to minimize 
divergence between approximating distribution q(z) and true posterior p(z | x)

One approximation strategy is to use the mean-field approximation that simply 
uses factorized gaussians for each of the latent random variables of interest. 
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*[5] for deriv.
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Experiments
Considered efficiency of method in minimizing synthetic test functions using only 
pairwise comparative observations

At each iteration a query point (x_n) is selected by the algorithm and compared 
against the current best point (x_b) using a test function (f_test)

The discrete preference observations are simulated in the following way :
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Experiments
Vary tolerance thresh under two settings (0.1, 0.001)

Baselines search methods

Random Search                  Pick random point in domain

Pure Exploration Search

Run each strategy 10 times and record interquartile range
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PrefOpt Software
Open source python library built on top of Edward, TensorFlow 

Succinct interface to conduct preference-based optimizations

import prefopt

# define the domain of the search space

bounding_box = [[-5.0 , 5.0] , [0.0 , 10.0]]

exp = prefopt.PreferenceExperiment(bounding_box)

for i in xrange(1, N) :

    # search for the next points to compare

    X = exp.find_next()

    # get user preference : -1 denotes x1 < x2 , 0 denotes x1 = x2 , 1 denotes x1 > x2

    order = get_user_pref(X[0], X[1])

    # update model with new preference observation

    exp.prefer(X[0], X[1], order)
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Future Work
Could it all be much simpler?

Mean-field approx. for variational inference might be giving poorer quality results

Alternative sampling mechanisms to estimate posterior

Still have nuisance parameters in model (β, σ,  α), how to best eliminate?

Batch query points (lots of work in Bayes Opt on this problem already)

Beyond low dimensional spaces : How can we simplify building ML / RL 
systems via preferences? [7]



Questions / Comments

Thanks for Listening!
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