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Introduction

In practical machine learning systems, performance
tuning is often more nuanced than minimizing a sin-
ole expected loss, and it may be more realistically
discussed as a multi-objective optimization problem

[ fi(x))
f: X — €, f(x) = s
\/n(x))
where € is the space of possible metric values (in this
article, we assume € € [0, 1]V).

We might pose such a problem, involving the accu-
mulation of competing metrics and finding an optimal
configuration, as

Xopt = arg max u(f(x))
xXcX

Here, u : () — R denotes a utility function which
encapsulates stakeholders’ optimality preferences.

Generative Model for
Multi-objective Utility Functions

We propose a model for utility functions with a multi-
plicative form, more suitable for utility functions with
nonlinear structure similar to F'-score style utilities
designed to balance precision and recall.
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Each of these individual utility functions could take
arbitrary structure; we choose to impose the form
of cumulative distribution functions of beta random
variables, so that
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This beta cdf transform has been proposed previously

to adapt non-stationary data for use in stationary
Gaussian processes |1].

Marginal Likelihood for Binary
Preference Data

It may be difficult for stakeholders to judge the util-
ity of a specific set of metrics f; in absolute terms,
but much simpler to compare a pair (fi, f;) and de-
cide which of the two is “better” [2]. We allow for
two types of observations from users: pairs of multi-
objective values where a clear preference in utility is
observed (denoted by Dp) and pairs where the utilty
is perceived to be equivalent (denoted by D),

Dp={(f" < "), ... (fI" < )}
Dp={(fi* <= 131, ... (fit <> £51)}
We define a parametrization strategy based on

marginal likelihood to help find the 4N + 1 best hy-
perparameters given specific results Dp and Dg
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We also define an auxiliary function

uq(fi, 2,0, 8) = u(fy; a, 8) — u(fy; a, B)

7O-E>

log(3i) ~ N(ps,05) (1)

We propose the following two likelihoods:

p(Dr | 8) =TI plu(t?) < u(t}) |0
=1 /[ hual€". 8 @.B)) ple.B | 6) dB da
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where h is the Heaviside function and ug ~ N (0, o)
We estimate both p(Dp | 8) and p(Dg | 0) using
Monte Carlo techniques.

Active Preference Learning of
Utility Functions

We adopt a simple active learning algorithm that se-
quentially decides on a pair of multi-objective val-
ues to query the stakeholders for their preference.
Our approach draws inspiration from SMBO algo-
rithms, which have been used for human-in-the-loop
optimization tasks previously [3].

Algorithm 1 Active Utility Function Pref. Learning
Input: )
Dp, Dp < INITUSERPREFS((?)
for: < 1to71 do
Orie < argmaxy p(Dp | 0) p(Dg | 0)
fA, fB — arg maxe g e CL(fl, fQ : HMLE)
p < GETUSERPREF(f4,fgz) ({ AB,E })
if p ==
Dp + Dg U (fA <~ fB)
else
Dp +— Dp U (fO < fp)
end for

We define an entropy-like acqusition function to guide
the search for the pair of metric configurations whose
difference in utility has the greatest uncertainty:.

a(f,fo; Ohr) = Var(ug(f, £ | aver, Buir)),
where ay g, ByLe follow the distributions defined in

(1) with hyperparameters from 6y k.

Interactive Tool for Utility
Preference Queries

When querying for the stakeholders preferences, a
simple back-to-back bar chart of the multi-objective
value pairs is displayed as shown in Figure 1.
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Figure 1: A sample comparison card for preference solicitation
showing 3 metrics ( fi, f2, f3) in two configurations A and B. Users
are asked if they believe utility of configuration A or B to be
higher. Users can also specify that they perceive the utilities of

the configurations as equal
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Figure 2: Plots of learned independent utilities with mean and
interquartiles. Starting from top left and proceeding clockise, the
test utility functions were : 1. max f1+2f5 2. min f;s.t. fo, > 0.6
3. max 5f1 +2fo + f3 4. min fis.t. fo <0.2, f3> 0.6

Since the learned utility is a product of N cdis, these
distributions can be independently visualized as an
introspection mechanism.

Figure 2 provides some confidence in the learned

joint utility functions. For example, consider the top
right plot (2), corresponding to the test utility : min
f1 8.t. fo > 0.6. We can see that the model has at-
tempted to learn the threshold constraint of f5 > 0.6.
We see that the individual utility for fy has a sharp,
non-linear spike around 0.6. In the full utility func-
tion product then, configurations with fo < 0.6 will
be zeroed out and those with fo > 0.6, the utility
function will take on the values of f1. The individ-
ual utility for minimization metrics is defined as the

survival function (1 — u;( f;(x)) of the beta cdf.

Experimental Results

Explicit test utility functions were used to simulate
implicit human utility functions. A hold-out set of
10,000 random multi-objective configurations were
cenerated for each test function and the Kendall rank
correlation coefficient was used to quantify the ordi-
nal association between the test utility function values
and the mean learned utility function values

Table 1: Kendall-Tau Correlation using Different Search Policies

Test Utility Function Rnd Search Pair Entropy
max f1 EE 2f2 0.8756 0.8618
max [ + 10f5 0.9422 0.9615
min fi s.t. fo > 0.6 0.6507 0.6893
max 2 fifs / (f1 + f2) 0.8844 0.9039
max o f1f2 / (4f1 + f2> 0.8949 0.9120
max fi + 2fo+ f3 0.8490 0.7805
max bf1 + 2fs + f3 0.8738 0.8311
min f; s.t. fo > 0.6, f3 < 0.2 0.2949 0.3257
max 2 (fif2) / (f1 + f2)

s.t. 3> 0.95 0.2309 0.20648
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