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Introduction

In practical machine learning systems, performance
tuning is often more nuanced than minimizing a sin-
gle expected loss, and it may be more realistically
discussed as a multi-objective optimization problem

f : X → Ω, f(x) =


f1(x)

...
fN(x)


where Ω is the space of possible metric values (in this
article, we assume Ω ∈ [0, 1]N).
We might pose such a problem, involving the accu-
mulation of competing metrics and finding an optimal
configuration, as

xopt = arg max
x∈X

u(f(x))

Here, u : Ω → R denotes a utility function which
encapsulates stakeholders’ optimality preferences.

Generative Model for
Multi-objective Utility Functions

We propose a model for utility functions with a multi-
plicative form, more suitable for utility functions with
nonlinear structure similar to F -score style utilities
designed to balance precision and recall.

u(f(x)) =
N∏
i=1
ui(fi(x))

Each of these individual utility functions could take
arbitrary structure; we choose to impose the form
of cumulative distribution functions of beta random
variables, so that

ui(fi(x); αi, βi) =
∫ fi(x)

0

tαi−1(1− t)βi−1

B(αi, βi)
dt

log (αi) ∼ N (µαi, σαi), log(βi) ∼ N (µβi, σβi) (1)
This beta cdf transform has been proposed previously
to adapt non-stationary data for use in stationary
Gaussian processes [1].

Marginal Likelihood for Binary
Preference Data

It may be difficult for stakeholders to judge the util-
ity of a specific set of metrics f1 in absolute terms,
but much simpler to compare a pair (f1, f2) and de-
cide which of the two is “better” [2]. We allow for
two types of observations from users: pairs of multi-
objective values where a clear preference in utility is
observed (denoted by DP ) and pairs where the utilty
is perceived to be equivalent (denoted by DE),

DP = {(f p1
1 ≺ f p1

2 ), . . . , (f pM1 ≺ f pM2 )}
DE = {(f e1

1 ≺� f e1
2 ), . . . , (f eL1 ≺� f eL2 )}

We define a parametrization strategy based on
marginal likelihood to help find the 4N + 1 best hy-
perparameters given specific results DP and DE

θθθ = (µα1, σα1, µβ1, σβ1, µα2, · · · , σE)
We also define an auxiliary function

ud(f1, f2;ααα,βββ) = u(f2;ααα,βββ)− u(f1;ααα,βββ)

We propose the following two likelihoods:

p(DP | θθθ) =
M∏
i=1
p(u(f pi1 ) ≺ u(f pi2 ) | θθθ)

=
M∏
i=1

∫∫
h(ud(f pi1 , f

pi
2 ; ααα,βββ)) p(ααα,βββ | θθθ) dβββ dααα

p(DE | θθθ) =
L∏
j=1

p(u(f ej1 ) ≺� u(f ej2 ) | θθθ)

=
L∏
j=1

∫∫
2 p(uE ≤ −

∣∣∣ud(f ej1 , f
ej
2 ; ααα,βββ)

∣∣∣ ) p(ααα,βββ | θθθ)dβββ dααα

where h is the Heaviside function and uE ∼ N (0, σE)
We estimate both p(DP | θθθ) and p(DE | θθθ) using
Monte Carlo techniques.

Active Preference Learning of
Utility Functions

We adopt a simple active learning algorithm that se-
quentially decides on a pair of multi-objective val-
ues to query the stakeholders for their preference.
Our approach draws inspiration from SMBO algo-
rithms, which have been used for human-in-the-loop
optimization tasks previously [3].
Algorithm 1 Active Utility Function Pref. Learning

Input: Ω
DP ,DE ← InitUserPrefs(Ω)
for i← 1 to T do

θθθMLE ← arg maxθθθ p(DP | θθθ) p(DE | θθθ)
fA, fB ← arg maxf1,f2∈Ω a(f1, f2 ; θθθMLE)
p← GetUserPref(fA, fB) ({ A,B,E })
if p == E
DE ← DE ∪ (fA ≺� fB)

else
DP ← DP ∪ (fo ≺ fp)

end for

We define an entropy-like acqusition function to guide
the search for the pair of metric configurations whose
difference in utility has the greatest uncertainty.

a(f1, f2 ; θθθMLE) = Var(ud(f1, f2 | αααMLE, βββMLE)),
where αααMLE,βββMLE follow the distributions defined in
(1) with hyperparameters from θθθMLE.

Interactive Tool for Utility
Preference Queries

When querying for the stakeholders preferences, a
simple back-to-back bar chart of the multi-objective
value pairs is displayed as shown in Figure 1.

Figure 1: A sample comparison card for preference solicitation
showing 3 metrics (f1, f2, f3) in two configurations A and B. Users
are asked if they believe utility of configuration A or B to be
higher. Users can also specify that they perceive the utilities of
the configurations as equal

Figure 2: Plots of learned independent utilities with mean and
interquartiles. Starting from top left and proceeding clockise, the
test utility functions were : 1. max f1+2f2 2. min f1 s.t. f2 > 0.6
3. max 5f1 + 2f2 + f3 4. min f1 s.t. f2 < 0.2, f3 > 0.6

Since the learned utility is a product of N cdfs, these
distributions can be independently visualized as an
introspection mechanism.
Figure 2 provides some confidence in the learned
joint utility functions. For example, consider the top
right plot (2), corresponding to the test utility : min
f1 s.t. f2 > 0.6. We can see that the model has at-
tempted to learn the threshold constraint of f2 > 0.6.
We see that the individual utility for f2 has a sharp,
non-linear spike around 0.6. In the full utility func-
tion product then, configurations with f2 < 0.6 will
be zeroed out and those with f2 > 0.6, the utility
function will take on the values of f1. The individ-
ual utility for minimization metrics is defined as the
survival function (1− ui(fi(x)) of the beta cdf.

Experimental Results

Explicit test utility functions were used to simulate
implicit human utility functions. A hold-out set of
10,000 random multi-objective configurations were
generated for each test function and the Kendall rank
correlation coefficient was used to quantify the ordi-
nal association between the test utility function values
and the mean learned utility function values
Table 1: Kendall-Tau Correlation using Different Search Policies

Test Utility Function Rnd Search Pair Entropy
max f1 + 2f2 0.8756 0.8618
max f1 + 10f2 0.9422 0.9615
min f1 s.t. f2 > 0.6 0.6507 0.6893
max 2 f1f2 / (f1 + f2) 0.8844 0.9039
max 5 f1f2 / (4f1 + f2) 0.8949 0.9120
max f1 + 2f2 + f3 0.8490 0.7805
max 5f1 + 2f2 + f3 0.8738 0.8311
min f1 s.t. f2 > 0.6, f3 < 0.2 0.2949 0.3257
max 2 (f1f2) / (f1 + f2)
s.t. f3 > 0.95 0.2309 0.2648
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