
Evaluation System for a
Bayesian Optimization Service

Ian Dewancker1, Michael McCourt1, Scott Clark1,
Patrick Hayes1, Alexandra Johnson1 and George Ke2

1SigOpt, 2University of Waterloo

Objectives
An evaluation framework for rigorously testing and
quickly understanding the impact of changes to the
SigOpt optimization service.
• Perform end-to-end testing of service
• Compare between algorithm versions
• Compare against external baselines

Introduction

SigOpt o�ers an optimization service to help cus-
tomers tune complex systems, simulations and mod-
els. Our optimization engine applies several concepts
from Bayesian optimization [1] and machine learning
to optimize customers metrics as quickly as possible.
In particular, we consider problems where the maxi-
mum is sought for an expensive function f : X æ R,

x
opt

= arg max
xœX

f (x),

SigOpt’s core optimization engine is a closed-source
fork of the open-source MOE project [2]. The SigOpt
service supports a succinct set of HTTP API end-
points for optimizing objective functions.

Figure 1: Hypothetical optimization methods A and B both
achieve the same Best Found of 0.97 after 40 evaluations.
Method A however finds the optimum in fewer evaluations.

Metrics

The performance metrics we consider for comparisons
on a given objective function are the best value seen
by the end of the optimization (Best Found), and
the area under the best seen curve (AUC). The
AUC metric can help to better di�erentiate per-
formance, as shown in Figure 1. Optimization al-
gorithms are run at least 20 times on each function.
The distributions of the performance metrics are com-
pared using the non-parametric Mann-Whitney U

test, used in previous studies of Bayesian optimiza-
tion methods [3] [4].

Benchmark Suite

The tests for our evaluation system consist of closed-
form optimization functions [5] which are extensions
of an earlier set proposed for black-box optimization
evaluation. The benchmark suite is open source.

Infrastructure

Lightweight function evaluation processes are run
concurrently on a master machine with many cores.
External baseline methods including TPE, SMAC,
Spearmint, particle swarm optimization and random
search are run locally on master.

Figure 2: Architecture of evaluation system infrastructure

Each evaluation process communicates with an on-
demand cluster of SigOpt API workers, which in turn
co-ordinate each optimization request with a cluster
of instances running the SigOpt optimization engine
as well as a database used by the service. This design
closely follows the architecture of the production sys-
tem. Result data is archived in a simple, extensible
JSON format. The result data and summarizations
are then visualized on a small web application.

Visualization Tools

To better summarize the relative performance be-
tween two methods (A, B) using metric M , we cre-
ate histograms of the p-values returned by the Mann-
Whitney U tests. Test functions are first partitioned
by the relative expected value of the metric M , then
histograms are generated for the two sets.

wins(A > B)
M

= { func | E[M
A

] > E[M
B

] }
wins(B > A)

M

= { func | E[M
B

] > E[M
A

] }

Figure 3: Above: Histograms for two comparable methods.
Below : Method B (in green) has highly significant wins on test
functions, method A (in red) has only low significance wins

For inspecting comparative performance on individ-
ual functions, we plot the best value of the objective
metric seen after each function evaluation.

Figure 4: Comparative best seen trace on test function

Figure 4 shows the best seen traces of SigOpt (in red)
and particle swarm optimization (in blue) on a given
test function.

Conclusions

Our evaluation system has been become a valuable
analysis tool when considering algorithm or system
changes to the SigOpt optimization service. Data
driven performance analysis is an e�ective way to en-
able faster iteration and evaluation of a wide spec-
trum of ideas. The system continues to guide im-
provements to the core SigOpt service by providing
empirical comparisons between internal changes, al-
ternative optimization methods, as well helping to
expose errors and bugs.

References

[1] Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
Practical bayesian optimization of machine learning
algorithms.
In Advances in neural information processing systems,
pages 2951–2959, 2012.

[2] Scott Clark, Eric Liu, Peter Frazier, JiaLei Wang, Deniz
Oktay, and Norases Vesdapunt.
MOE: A global, black box optimization engine for real
world metric optimization.
https://github.com/Yelp/MOE, 2014.

[3] Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown.
Sequential model-based optimization for general algorithm
configuration.
In Learning and Intelligent Optimization, pages 507–523.
Springer, 2011.

[4] Ian Dewancker, Michael McCourt, Scott Clark, Patrick
Hayes, Alexandra Johnson, and George Ke.
A strategy for ranking optimization methods using multiple
criteria.
In ICML AutoML Workshop, 2016.

[5] Michael McCourt.
Optimization Test Functions.
https://github.com/sigopt/evalset, 2016.

Contact Information
• Web: http://www.sigopt.com
• Email: contact@sigopt.com


